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Direction Océanographie Spatiale, Ramonville, France, 5 Center for Applied Biodiversity Science, Conservation International, Arlington, Virginia, United States of America,

6 Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, United States of America, 7 Department of Biology, Indiana-Purdue University,

Fort Wayne, Indiana, United States of America, 8 Parque Nacional Marino Las Baulas, Ministerio de Ambiente y Energı́a, San José, Costa Rica, 9 Wider Caribbean Sea Turtle
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Effective transboundary conservation of highly migratory marine animals requires international management
cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback
turtles (Dermochelys coriacea) in the eastern Pacific have declined by .90% during the past two decades, primarily due
to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting
beaches are ongoing, relatively little is known about this population of leatherbacks’ oceanic habitat use and
migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset
(12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically
tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific.
After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid,
directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations,
leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and
into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean
currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern
South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch
interactions. These findings directly inform existing multinational conservation frameworks and provide immediate
regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing
future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
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Introduction

Leatherback turtles (Dermochelys coriacea) in the eastern
Pacific (EP) have exhibited population declines of up to 90%
during the past two decades [1,2]. These declines have been
driven by a number of factors, including incidental mortality
in fisheries, loss of nesting habitats, and unsustainable egg
harvest [1,3]. Of the extant leatherback nesting beaches in the
EP, Playa Grande in Parque Nacional Marino Las Baulas
(PNMB), Costa Rica, supports the largest nesting colony [1].
After the nesting period (approximately 60 d), EP leather-
backs perform long-distance migrations from breeding areas
to feeding areas, where they remain for 2 to 7 y [4]. Therefore,
while protection of nesting habitat is important to enhance
recruitment into the population, an improved understanding
of the at-sea distribution and movements of EP leatherbacks
is vital to ensuring their long-term survival. In particular,
long-range tracking studies using electronic tags can inform
conservation efforts by identifying high-use areas for leather-
backs in time and space, as well as environmental influences
on leatherback behavior [5].

Leatherback turtles globally undertake long-distance mi-
grations over thousands of kilometers [6–14]. Morreale et al.
[6] first described the movements of EP leatherbacks from the
tracks of eight turtles (durations 3–87 d) and identified a

persistent southbound migration corridor from PNMB
toward the Galápagos Islands. Additional tagging efforts at
a nesting beach in Mexiquillo, México, about 965 km north of
Costa Rica, revealed that leatherbacks traveled routes that
shared the same directional heading and general high seas
habitats in the eastern South Pacific as those traveled by
Costa Rican turtles [7]. In contrast, leatherbacks from other
populations demonstrate inter-individual behavioral varia-
tion with respect to post-nesting migration routes [8–
10,13,14]. The apparent persistence of the EP leatherback
migration pattern provides a unique opportunity to generate
a cohesive conservation management approach for this
endangered population.
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Conservation of highly migratory marine species requires
international cooperation for implementation of transboun-
dary management strategies. Specifically, information on
movements and distributions of large marine predators
collected by electronic tracking devices can provide guidance
to the development of national and multinational fisheries
management strategies and bycatch mitigation efforts, as well
as support related policy efforts [15]. One such framework is
the Eastern Tropical Pacific Seascape (ETPS) initiative [16],
which is a multinational coordination of marine resource
management within the combined exclusive economic zones
of Costa Rica, Panama, Colombia, and Ecuador. The ETPS is
an area that is home to several marine protected areas (MPAs)
(e.g., PNMB) and World Heritage sites (e.g., Cocos Island,
Coiba Island National Park, Malpelo Island, Galápagos Islands
and Marine Reserve). Thus, the ETPS represents a framework
through which habitat use and movement data for migratory
animals, such as leatherbacks, can be translated into tangible
management actions.

Here we present the largest multi-year tracking data set

collected for this species, based on 46 individuals satellite-
tagged during 2004–2007 at PNMB. Our approach is
consistent with a recent review [17], which emphasized the
importance of tracking large sample sizes and an interdisci-
plinary approach integrating oceanographic cues with be-
havior. These data enabled us to (1) describe the distribution
and horizontal movements of leatherbacks in the EP, (2)
examine the influence of oceanic currents on leatherback
migrations, (3) assess leatherback high-use habitats, (4)
confirm and elucidate a leatherback migration corridor from
the nesting beach to 5 8S, and (5) describe leatherback
movements beyond 10 8S into the South Pacific. In addition,
these data identify critical areas for directed conservation
efforts to ensure the survival of this species in the EP.

Results

We tagged 46 female leatherback turtles during oviposi-
tion, resulting in 12,095 tracking days spanning 21 January
2004–5 July 2007, with a mean track duration of 263 d, a
distance of 8,070 km, and a travel speed of 37.7 km d�1 (Table
1). Movements by cohorts from a given year displayed
cohesion, even though initiation of the post-nesting migra-
tion among individuals differed by up to several weeks
(Figure 1). Only one individual tagged in 2005 (tag ID 56280)
remained in coastal waters off Costa Rica and Panama for the
entire tag duration (Figure 1A).
Upon completion of nesting activity, leatherbacks em-

barked on rapid (42.9 km d�1, standard deviation (sd) ¼ 27.7
km d�1) directed southward migrations through the equato-
rial region. Once south of 5 8S, the turtles dispersed
throughout the South Pacific Gyre following slower (23.8
km d�1, sd ¼ 16 km d�1), meandering paths, and remained
there through the duration of the tracking period (Figure
2A–2C). Across their migrations, turtles experienced a wide
range of surface temperatures (11.2–32.7 8C, mean¼ 25.2 8C,
sd ¼ 3.2 8C; Table 1). They encountered areas of high–eddy
kinetic energy (EKE) in the equatorial region (.100 cm2s�2),
and areas of very low EKE (,50 cm2s�2) in the dispersal
region (Figure 2B). Likewise, chlorophyll-a (CHL) concen-
trations were highest in the equatorial region (.0.3 mg m�3),
and lowest in the South Pacific Gyre (,0.1 mg m�3) (Figure
2C). Swimming speed was significantly higher in areas of high
CHL and vice-versa (linear regression: b ¼ 0.964 6 0.057,
F1,9577 ¼ 281, p , 0.001, r2 ¼ 0.029), although the association
between these two variables was weak.

Table 1. Tracking Data from 46 Satellite-Linked Tags Deployed on Leatherback Turtles on Playa Grande, Costa Rica, 2004–-2007

Data 2004a (27 tags; 33,411 records) 2005 (8 tags; 13,105 records) 2007b (11 tags; 20,088 records)

Mean sd Min Max Mean sd Min Max Mean sd Min Max

Distance (km) 8,867 3,896 2,161 1,7133 8,229 4,738 2,872 14,338 5,997 1,453 3,339 7,749

Duration (d) 313 141 58 485 271 195 55 562 134 31 74 160

Mean Speed

(km d�1)

33.4 10.4 20.6 61.7 37.1 12.3 19.7 55.7 48.7 4.6 42.0 54.7

Temp (8C) 24.7 3.3 11.6 30.3 25.3 3.1 13.3 29.7 25.8 3.1 11.2 32.7

a Temperature data for 2004 are based on 17 SMRU SRDL tags.
b This table includes SSM speed data through 1 June 2007. Mean speed (km d�1) values may be biased by shorter tracking durations, influenced by higher speeds during initial migration
phase.
doi:10.1371/journal.pbio.0060171.t001
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Author Summary

Highly migratory marine animals routinely cross international
borders during extensive migrations over thousands of kilometers,
thus requiring conservation strategies with information about
habitat use and movement patterns. Critically endangered leather-
back turtles (Dermochelys coriacea) in the eastern Pacific have
suffered a severe population decline in recent years. In this study, we
present the largest multi-year satellite tracking data set for leather-
back turtles (n¼ 46 turtles, 12,095 days) to describe the migrations,
habitats, and dispersal of female leatherbacks tagged at Playa
Grande, Costa Rica. Leatherbacks followed a migration corridor
southward from Costa Rica into the South Pacific Gyre in each year of
our study. In the equatorial region, leatherbacks experienced strong
ocean currents that influenced the direction of their movements;
leatherbacks responded to current deflection with rapid, directed
movements to maintain their southward heading. After passing
through this equatorial current field, turtles dispersed broadly within
a low-energy, low-productivity region of the South Pacific. Our
analyses revealed that ocean currents shaped the migration corridor
and influenced the scope of turtle dispersal in the South Pacific—
results that provide a biological rationale for the development of
multi-scale conservation strategies. These strategies could involve
improved and enhanced monitoring of leatherback–fisheries inter-
actions as well as dynamic time-area fisheries closures and protected
area designations within the high seas of the South Pacific.



Ocean current energetics had a major impact on the
turtles’ migration route. Between latitudes 12 8N and 5 8S,
southbound turtles negotiated the strong alternating east-
ward-westward flows of the equatorial current system, whose
strength can be of comparable magnitude to turtle travel
speeds (Text S1 and Figure S1). Turtles initially moved
rapidly WSW (mean speed ¼ 63.8 km d�1, sd ¼ 31.8 km d�1;
mean heading¼ 2478, sd¼ 408) through a narrow zone of low
mean kinetic energy (MKE) near 10 8N between the southern
edge of the Costa Rica Dome (CRD) and the Costa Rica
Coastal Current (CRCC) (Figure 3A–3C, Text S1, and Figure
S1). They then crossed the energetic flow along the southern
edge of the CRD between 8 8N and 6 8N on a SE heading
(mean speed¼ 49.9 km d�1, sd¼ 27.8 km d�1; mean heading¼
1738, sd ¼ 428). Once outside the CRD, turtles turned WSW
(mean speed¼ 50.2 km d�1, sd¼ 26.4 km d�1; mean heading¼
2258, sd ¼ 438) over another area of low MKE near 4 8N and
continued rapidly on this course aided by the westward-
flowing northern branch of the South Equatorial Current
(SEC) near 3 8N. Between 1 8N and 2 8S, turtles turned
southward (mean speed¼ 41.7 km d�1, sd¼ 22.9 km d�1; mean
heading ¼ 1868, sd ¼ 468), as they rapidly crossed the
Equatorial Undercurrent (EUC) by again increasing their
southward speed, even while being advected eastward by the
EUC (Figure 3A–3C). A final SW turn (mean speed¼ 43.5 km
d�1, sd¼17.8 km d�1; mean heading¼ 1968, sd¼ 378) occurred
as the turtles crossed the much weaker southern branch of
the westward SEC between 3 8S and 5 8S.

Examination of the ratio of turtle meridional velocity to
current zonal velocity in the 12 8N–5 8S region revealed that
in areas of strong currents, the turtles responded by
increasing their southward velocity regardless of flow
direction (i.e., ratios consistently close to zero in the 8 8N–6
8N and 4 8N–1 8N latitudinal bands; Figure 3D). After the
effect of the currents was removed (Figure 3F), the tracks
appeared much straighter for all years, showing a consistent
SSW heading between 12 8N and 1 8N (mean¼ 1938, sd¼ 308)
and a southward heading afterward. The contours of geo-
magnetic force were generally oriented NE-SW while the
contours of geomagnetic inclination were generally oriented
NW-SE, forming a grid pattern in the 12 8N–5 8S region
(Figure 3F). The current-corrected tracks generally crossed
these magnetic gradients from north to south (Figure 3F).

Discussion

Elucidation of the EP Leatherback Migration Corridor: The
Influence of Ocean Currents
This multi-year dataset confirmed the existence of a

persistent migration corridor for leatherbacks spanning from
the Pacific coast of Central America, across the equator and
into the South Pacific. The turtles traveled along a predom-
inantly southwesterly heading, which was strongly influenced
by ocean currents. An earlier telemetry study hypothesized a
leatherback migration corridor between Costa Rica and
Galápagos that could be influenced by environmental factors
such as ocean fronts, bathymetric features, currents, or

Figure 1. Map and Timeline of Leatherback Sea Turtle Tracking Data

(A) Satellite transmission positions for 46 leatherback turtles from 2004 (n¼ 27, orange), 2005 (n¼ 8, purple), and 2007 (n¼ 11, green), tagged at Playa
Grande, Costa Rica, overlaid on bathymetry (in m). Prominent bathymetric features and island groups are labeled (EPR ¼ East Pacific Rise).
(B) Timeline of satellite transmissions for each tag (tag ID is the ARGOS-assigned transmitter number).
doi:10.1371/journal.pbio.0060171.g001
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geomagnetic cues [6]. We examined each of these hypotheses
with our larger sample size, and found no relationship
between the southward turtle movements and the most
prominent frontal feature in the region, the Equatorial
Front, which runs east to west just north of the equator (Text
S1). We also found no consistent association between
leatherback tracks and the Cocos Ridge, the dominant
bathymetric feature in the region, even after current
correction (mean turtle heading ¼ 1938 versus 2248 if they
had followed the orientation of the Ridge). Instead, the
turtles’ movements over the Cocos Ridge were correlated
with the current strength of the southern edge of the CRD,
which deflected them over portions of the Ridge each year
(Figure 3A–3C). Once the influence of currents was removed,
it was apparent that the turns observed in the tracks in the
corridor region (12 8N–5 8S) were current-induced. For these
reasons, we conclude that navigation through the complex
and highly energetic equatorial region supports the existence
of a compass sense, possibly guided by the geomagnetic map
(Figure 3F) formed by the force and inclination fields in the
region, as has been documented for sea turtles in other parts
of the world [18].

Our results demonstrate that leatherbacks responded to
strong zonal currents by increasing their southward speed,
probably to maintain their SSW headings and to avoid being
pushed too far eastward or westward from their destination
in the South Pacific Gyre. Inter-annual variability in current
location and strength was a major force shaping the turtles’
migration routes. In each year, the migration corridor was
initially constrained to the zone of lowest MKE associated
with the center of the CRD (Figure 3A–3C) and, ultimately,
the breadth of their dispersal within the South Pacific Gyre
(Figure 2B) was determined by the strength of the equatorial
currents through which they migrated. This was particularly
evident in 2005, when the currents were weaker, and in 2007,
with stronger currents (Figure 3B and 3C). This interaction
between post-nesting EP leatherbacks and currents contrasts

with that of South African leatherbacks [19], whose variable
long-distance movements suggest passive drift with prevailing
currents in the Southwest Indian Ocean.
Leatherbacks moved rapidly through the productive

equatorial region [20,21] and then dispersed in the most
oligotrophic region of the Pacific Ocean [22]. The slow,
meandering movements by the turtles in the South Pacific
Gyre suggest that post-nesting female leatherbacks probably
migrate there to forage. Leatherback turtles do not feed
directly on phytoplankton but on large gelatinous zooplank-
ton [23], and despite its low phytoplanktonic biomass, the
South Pacific Gyre ecosystem sustains an ample mesozoo-
planktonic forage base and a substantial longline tuna fishery
[24,25]. Therefore, we suggest that following the energetic
demands of egg production, it may be more efficient for post-
nesting EP leatherbacks to forage in an oceanographically
quiescent region within which high water clarity could
enhance prey detection [26] while requiring minimal swim-
ming effort.
A further possible explanation for the consistency in

migration routes followed by EP leatherbacks is that
present-day migration patterns do not reflect the historic
diversity of migration strategies, such as that observed in
other leatherback populations [13,14,19,27]. The leatherback
tracks presented here, which document the first 12–18 mo of
the entire ;4-y remigration interval, suggest that post-
nesting EP turtles almost exclusively occupy oceanic areas.
Eckert and Sarti [7] also tracked EP leatherbacks to oceanic
areas, but a few of these turtles moved into coastal areas off
South America. A single turtle in this study (tag ID 56280,
tagged during 2005) occupied exclusively nearshore foraging
habitats along the coast of Central America throughout the
entirety of its tracking duration (562 d). Previous reports have
indicated substantial leatherback bycatch in nearshore fish-
eries in the EP, specifically in swordfish driftnets off Chile and
Peru [7,28,29], and leatherbacks continue to interact with
fisheries in Peruvian [30] and Chilean waters [31]. Given that

Figure 2. Large-Scale Oceanographic Characteristics and Leatherback Movements in the EP

Turtle median daily positions (black dots) generated with state-space model interpolation [21], overlaid on long-term mean.
(A) Turtle median daily speed (blue line) and heading (black line), with corresponding standard-error envelopes, averaged in one-degree latitudinal bins.
(B) EKE (in cm2 s�2).
(C) Near-surface CHL concentration (in mg m�3).
doi:10.1371/journal.pbio.0060171.g002
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Figure 3. Leatherback Movements in Relation to Ocean Currents in the Migration Corridor Region

(A–C) Turtle tracks overlaid on MKE (in cm2 s�2) for February–April periods for 2004, 2005, and 2007. Stippling shows the 2000-m isobath highlighting
the Cocos Ridge.
(D) Ratio of turtle meridional velocity to current zonal velocity in the migration corridor region. Points corresponding to turtle meridional velocities
faster than �70 km d�1 are colored in red.
(E) Schematic of turtle migration corridor through the equatorial current system (current abbreviations are given in the text), based on the 75% home-
range utilization distribution contour.
(F) Current corrected turtle tracks from 2004 (orange), 2005 (green), and 2007 (purple), overlaid on contours of magnetic force (solid thin black lines)
and magnetic inclination (dashed thin black lines). The force field has an intensity ranging from 38,314 nT in the north to 27,798 nT in the south, and
contours are drawn every 420 nT. The inclination field ranges from 1.68 and 43.18, and contours are drawn every 1.78.
doi:10.1371/journal.pbio.0060171.g003
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coastal areas in the EP represent highly productive areas
when compared with oceanic areas, Saba et al. [32]
hypothesized that this bycatch could have essentially extir-
pated a ‘‘coastal’’ migratory phenotype in this population.
Sustained tracking efforts on the EP population, including
continuous tracking studies on previously tagged remigrant
turtles, and tagging of turtles in foraging habitats are
necessary to test this hypothesis.

Conservation Implications of EP Leatherback Tracking Data
Characterization of spatio-temporal habitat use is a

fundamental element of effective biodiversity conservation
management strategies. Our results have enabled us to define
two high-use areas for leatherback turtles in the EP: (1) an
oceanic post-nesting migration corridor shaped by currents,
and (2) and putative foraging grounds in the South Pacific
Gyre. The data provide compelling new strategies for
conservation of Pacific leatherbacks (Box 1), which could
also benefit other marine species.

First, we encourage enhanced regional and international
cooperation in management of leatherbacks and their
migration corridor occurring within existing MPAs (i.e.,
PNMB, Cocos Island, Coiba Island, Galápagos Islands) and
conservation initiatives (i.e., ETPS). Because much of the
leatherback dispersal region occurs within international
waters, multinational organizations and policy instruments
(i.e., Inter-American Convention for the Protection and
Conservation of Sea Turtles, Inter-American Tropical Tuna
Convention, Convention on Highly Migratory Species,
Comisión Permanente del Pacı́fico Sur, United Nations
Convention on the Law of the Sea, and South Pacific
Regional Fisheries Management Organization) should be
leveraged to achieve turtle management and conservation
outcomes on the high seas. The leatherback migration
corridor, which occurs during a period of a few months
(February–April, Figure 3H), is largely contained within the
boundaries of the ETPS, which also includes PNMB and the
coastal areas used by one of the tagged turtles. This affords an
opportunity for each of the governments involved in these
initiatives to actively participate in the spatio-temporal

management of leatherbacks as they occupy the network of
MPAs in this region (Figure 4).
Second, we strongly recommend enhanced and increased

collection of fisheries-dependent bycatch data and fisheries-
independent habitat use data throughout the EP. In
particular, expanded and improved observer coverage in EP
fisheries would be an important step to characterize leather-
back interactions with fisheries operations in the EP, because
currently available information on leatherback bycatch is
inconsistently collected for most fisheries. Collection of
fisheries bycatch data for leatherbacks is critical to evaluating
relative effects of distinct fisheries on leatherback mortality.
Leatherback interactions with small-scale fisheries (i.e.,
artisanal, traditional, subsistence) may be especially critical
in coastal habitats where extremely high sea turtle bycatch
rates have been observed [7,33].
For fisheries-independent information, further electronic

tagging efforts on EP leatherbacks and other highly migratory
marine species that share similar high seas habitats and face
common human threats would improve effectiveness of
adaptive conservation schemes. Our data represent only the
initial segment of the entire nonreproductive period for
female leatherbacks, leaving much of their at-sea behavior
and habitat use unexplored. Therefore, a priority for future
leatherback tagging studies should be to focus on foraging
ground behavior and movements throughout the entire
nonreproductive period.
Third, improved data on fisheries bycatch and leatherback

habitat use in the EP as outlined above would inform
planning of dynamic time-area closures and/or appropriate
gear modifications intended to reduce turtle interactions
with fisheries. A current illustration of this approach is in the
USA California/Oregon-based drift-gillnet and longline fish-
eries, where a time-area closure was implemented based on

Figure 4. Combined Utilization Distribution by EP Leatherback Turtles

from all Tracking Data

EP leatherback turtle home-range utilization distribution for all years
combined (2004, 2005, and 2007). Boundaries of the ETPS, corresponding
to the exclusive economic zones of Costa Rica, Panama, Ecuador, and
Colombia, are shown as dashed blue lines. The green polygon comprises
the region with the lowest climatological EKE (�30 cm2 s�2) in the
South Pacific Gyre.
doi:10.1371/journal.pbio.0060171.g004

Box 1. Conservation Recommendations from EP Leatherback
Tracking Data

1. Implement specific strategies for leatherback protection within
existing MPAs and conservation initiatives in the EP.

2. Improve collection of fisheries-dependent information to characterize
leatherback-fisheries interactions in the EP.

3. Increase understanding of multi-species movements and high-use
areas through the use of fisheries-independent data (i.e. electronic
tagging).

4. Apply recommendations 1–3 above for planning of dynamic time-area
closures and/or appropriate gear modifications to reduce leatherback-
fisheries interactions within the following high-use areas:

� EP leatherback high-use area #1: Post-nesting migration corridor
spanning an open-ocean region from the Pacific coast of northwest
Costa Rica (approximately 128N) to approximately 58S, within which
turtles are seasonally concentrated during the period of February-April.
� EP leatherback high-use area #2: Defined by the predictable association
of turtles during their dispersal phase within putative foraging habitats
in the region of current motions (i.e. eddy kinetic energy) in the South
Pacific Gyre.
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temporal and spatial patterns of leatherback distributions;
leatherback bycatch was reduced to zero following imple-
mentation of this measure [34]. This tracking study defines at
least two regions within the Pacific where strategic time-area
closures could be a useful management tool for protecting
leatherbacks within high-use habitats. The first area is the
post-nesting migration corridor spanning an open-ocean
region from the Pacific coast of northwest Costa Rica
(approximately 12 8N) to approximately 5 8S, within which
turtles are seasonally concentrated, in predictable patterns,
during the period of February–April. The second high-use
area is defined by the predictable association of turtles during
their dispersal phase (through putative foraging habitats)
with the low EKE region of the South Pacific Gyre. Time-area
closures could be applied to protect post-nesting turtles when
they are seasonally concentrated during migration (i.e., while
moving through the ETPS) and within international waters on
the high seas during foraging periods within low EKE regions
of the South Pacific Gyre. Another specific opportunity to
manage turtles during dispersal occurs when they pass
through the oceanic island territories of Chile (i.e., Easter
Island, Juan Fernandez Islands, and the Desventuras Islands).
Management actions within each of the above regions should
be based upon spatio-temporal overlap of the leatherback
high-use areas and areas of high bycatch. In addition to
establishing time-area closures, new technologies such as
vessel monitoring and tracking systems (VMS) combined with
continuous satellite tagging of EP turtles (for near–real time
high-use data) could further mitigate human interactions
with leatherbacks.

The implementation of time-area closures to protect
leatherbacks in the South Pacific would provide parallel
conservation benefits for other marine species [35–42] whose
movements through the ETP region have also been revealed
by satellite tracking and other data. For example, recent
satellite tracking studies on green turtles (Chelonia mydas) from
Galápagos have indicated that February–April closures to
protect green turtles would also benefit migrating leather-
backs that use similar migratory and foraging habitats with
the EP [42].

Large-scale electronic tagging studies will increasingly play
an important role in informing spatio-temporal management
activities of coastal and pelagic habitats for threatened
marine species [5]. Our results elucidate the oceanic
behaviors of leatherback turtles, and are applicable to
existing and future conservation strategies that promote the
recovery of EP leatherbacks (Box 1). In the future, animal
movement models derived from satellite-tag data, in combi-
nation with real-time oceanography [20,32,43] will provide
managers with the ability to predict the movement patterns
of leatherback turtles and to take effective conservation
actions to protect them at sea.

Materials and Methods

Tagging and data processing. Leatherback sea turtles (n¼ 36) were
instrumented with Sea Mammal Research Unit (SMRU) Satellite Relay
Data Logger (SRDL) tags during 2004 (n¼ 17), 2005 (n¼ 8), and 2007
(n ¼ 11). The SRDL tags were programmed to collect and transmit
position, temperature, dive data, and tag diagnostic information [24].
We tagged ten additional turtles in 2004 with Wildlife Computer
Smart Position Only (SPOT) tags, which were programmed to provide
position data. We mounted the satellite transmitters on the turtles

during oviposition using a harness technique [44] . Data from the tags
were transmitted via the ARGOS satellite system [45].

We extracted tag-derived surface temperature measurements from
the temperature-at-depth data transmitted by the SRDL tags. Surface
was considered to be the first depth bin (mean¼ 5.1 m, sd¼ 0.7 m). A
total of 5,787 temperature measurements were available after
discarding 105 records because the first depth was missing, had a
negative value, or had spurious position values.

Track filtering and interpolation. We generated final position
estimates at regular 6-h intervals using state-space models (SSMs)
[46,47] that were applied to the raw unfiltered satellite data to
improve position accuracy and to align with SMRU summary dive
data. The application of a switching SSM provided the capacity to
discern between two behavioral modes based on a first-difference
correlated random walk. The location of the switch between these
two behavioral modes was used to objectively define the transition
from inter-nesting (‘‘mode 2’’) to the post-nesting migration (‘‘mode
1’’) [47]. In cases where a clear switch was not present, we used a
sudden change in the travel speed to determine the cut-off. For this
paper, we only used the post-nesting portion of the tracks. Median
daily speeds and headings were calculated from the interpolated
tracks via first differencing consecutive points.

Track current correction. The observed track of an animal at any
given time is the result of the animal’s movement (swimming) plus the
displacement caused by ocean currents (drift). The true behavior of a
turtle can be thus obtained by removing the influence of currents on
the animal’s trajectory. We used surface current estimates obtained
from the sum of the geostrophic and Ekman components, as
measured by satellite [48], and removed them from the turtle
movements at the locations generated with the SSMs. Within the
equatorial band (4 8N–4 8S), a b-plane solution was applied [49].

High-use area analysis. We produced gridded utilization distribu-
tion maps [50] using a mesh size of 100 km2 and a fixed-kernel search
radius of 0.58 for all years combined. The 95% utilization contour was
used to define turtle high-use regions throughout the eastern tropical
and South Pacific and the 75% contour to delineate the migration
corridor between latitudes 12 8N and 58S.

Characterization of ocean currents. We characterized the ener-
getics of large-scale currents and their mesoscale fluctuations in the
eastern tropical and South Pacific using merged satellite altimeter
measurements of absolute dynamic topography and associated sea-
level anomalies [51]. These data are generated by the Archiving,
Validation, and Interpretation of Satellite Oceanographic data
(Aviso) project at 1/38 resolution. Within five degrees of the equator,
the Aviso product applies a b-plane solution [49] to obtain velocity
and velocity anomaly vectors. We computed MKE from the mean u-
and v- components of the geostrophic velocity asMKE¼0.5*(,u2.þ
,v2.). These calculations were performed separately for the
February–April period of each tracking year, since the emphasis
was on assessing the impact of inter-annual variability in geostrophic
current strength on turtle migration while crossing the equatorial
region. On the other hand, we computed EKE as a long-term mean
for the period 14 October 1992–18 April 2007 from the mean
geostrophic velocity anomalies (u9 and v9), as EKE ¼ 0.5*(,u92. þ
,v92.). In this case, the emphasis was on examining turtle
distribution in relation to a region of low mesoscale variability in
the South Pacific Gyre.

Phytoplankton CHL concentration. The distribution of phyto-
plankton standing stock is a useful indicator of biogeography and
ecosystem structure [24]. Near-surface CHL concentration, a proxy
for phytoplankton standing stock, was obtained from Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) satellite ocean-color observa-
tions at 9-km resolution. We computed a long-term mean for the
period September 1997–March 2007 for comparison of turtle
movements in relation to phytoplanktonic biomass distribution
throughout their range. Individual 8-d averages were also obtained
for each turtle median daily position. The relationship between CHL
and the turtles’ median daily speed was investigated using linear
regression, after log- and square-root-transformation, respectively, to
meet normality assumptions.

Digital bathymetry. We extracted bathymetry from the global sea-
floor topography of Smith and Sandwell [52], version 8.2 (November
2000) (http://topex.ucsd.edu/WWW_html/mar_topo.html). This da-
taset combines all available depth soundings with high-resolution
marine gravity information provided by the Geosat, ERS-1/2, and
TOPEX/Poseidon satellite altimeters, and has a nominal resolution of
2 arc min (;4 km). The 2000-m isobath was extracted from this
dataset to obtain the outline of the Cocos Ridge, the most prominent
bathymetric feature in the migration corridor region (12 8N–5 8S)
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running northeast (;438 azimuth) for ;1,200 km between Galápagos
and Central America.

Geomagnetism. Data on Earth’s magnetic field (force and
inclination) in the study area were calculated using the software
GeoMag 6.0, available from the NOAA National Geophysical Data
Center (http://www.ngdc.noaa.gov/seg/geom_util/geomutil.shtml),
and the most recent (2005) International Geomagnetic Reference
Field 10th generation (IGRF-10) coefficients.

Supporting Information

Figure S1. Surface Currents and Vertical Thermal Structure in the
Eastern Tropical and South Pacific

Schematic representation of near-surface currents and vertical
thermal structure in the eastern tropical and South Pacific, based
on climatological annual data. (A) Current vectors (black) overlaid on
current magnitude (colors; in cm s�1). Dashed black line denotes
subsurface flow; dashed white line indicates a section along 95 8W.
(B) Surface zonal (black arrows) and meridional (orange arrows)
velocities (in cm s�1) along 95 8W.
(C) Water-column temperature (colors; in 8C) and the 15, 20, and 25
8C isotherms (black contours) along 95 8W. Zonal currents are
represented as encircled x’s for westward flows and encircled dots for
eastward flows. Abbreviations are defined in the text.

Found at doi:10.1371/journal.pbio.0060171.sg001 (2.57 MB TIF).

Text S1. Currents and Thermal Structure of the Eastern Tropical and
South Pacific
Found at doi:10.1371/journal.pbio.0060171.sd001 (29 KB DOC).
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